
PAR Laboratory Assignment

Lab 5: Geometric (data) decomposition:

heat diffusion equation

E. Ayguadé, R. M. Badia, J. R. Herrero, J. Morillo, J. Tubella and G. Utrera

Spring 2018-19

Index

Index 1

1 Sequential heat diffusion program 2

2 Analysis with Tareador 3

3 Parallelization of Jacobi with OpenMP parallel 4

4 Parallelization of Gauss-Seidel with OpenMP ordered 5

5 Deliverable 6

Deliverable

1

1

Sequential heat diffusion program

In this session you will work on the parallelization of a sequential code (heat.c)1 that simulates heat
diffusion in a solid body using two different solvers for the heat equation (Jacobi and Gauss-Seidel).
Each solver has different numerical properties which are not relevant for the purposes of this laboratory
assignment; we use them because they show different parallel behaviors.

The picture below shows the resulting heat distribution when two heat sources are placed in the
borders of the 2D solid (one in the upper left corner and the other in the middle of the lower border).
The program is executed with a configuration file (test.dat) that specifies the maximum number of
simulation steps (iterations), the size of the body (resolution), the solver to be used (Algorithm) and
the heat sources, their position, size and temperature. The program generates performance measurements
and a file heat.ppm providing the solution as image (as portable pixmap file format), a gradient from
red (hot) to dark blue (cold).

Figure 1.1: Image representing the temperature in each point of the 2D solid body

1. Compile the sequential version of the program using "make heat" and execute the binary gener-
ated ("./heat test.dat"). The execution reports the execution time (in seconds), the number of
floating point operations (Flop) performed, the average number of floating point operations per-
formed per second (Flop/s), the residual and the number of simulation steps performed to reach
that residual. Visualize the image file generated with an image viewer (e.g. "display heat.ppm")
and copy heat.ppm to a different name, e.g. heat-jacobi.ppm for validation purposes.

2. Change the solver from Jacobi to Gauss-Seidel by editing the configuration file provided (test.dat),
execute again the sequential program and observe the differences with the previous execution. Note:
the images generated when using the two solvers are slightly different (you can check this by ap-
plying diff to the two image files generated). Again, save the .ppm files generated with a different
name, we will need them later to check the correctness of the parallel versions you will program.

1Copy the file in /scratch/boada-1/par0/sessions/lab5.tar.gz.

2

2

Analysis with Tareador

1. In this section we will use Tareador to analyze the task graphs generated when using the two
different solvers. We already provide you with an initial coarse-grain task definition ready to be
compiled ("make heat-tareador"). Take a look at the instrumentation performed in order to
identify the parallel tasks that are initially proposed. Compile with the appropriate make target
and execute with ./run-tareador.sh, changing the configuration file to use the different solvers.
Notice we are using small.dat as the configuration file for the Tareador instrumented executions
(which just performs a couple of iterations on a very small image).

2. Next explore the dependences that happen when a much finer-grain task decomposition is used:
one task for each iteration of the body of the innermost loop. Change the original Tareador
instrumentation for Jacobi to reflect the new proposed task granularity. Compile again, execute
and analyze the task graph generated.

(a) Which accesses to variables are causing the serialization of all the tasks? Use the Dataview
option in Tareador to identify them.

(b) Use the appropriate calls to temporarily filter the analysis for the variables you suspect are
causing the serialization and obtain a new task graph. Are you increasing the parallelism? How
would you guarantee these dependences in your OpenMP parallelization if using a parallelization
strategy based on #pragma omp for?

3. Repeat the process with the Gauss-Seidel solver, identifying the causes for the dependences that
appear between the tasks. How would you guarantee these dependences in your OpenMP paralleliza-
tion if using a parallelization strategy based on #pragma omp for? What if based on #pragma omp

task?

3

3

Parallelization of Jacobi with
OpenMP parallel

In this section you will parallelize the sequential code for Jacobi using #pragma omp parallel, follow-
ing a given geometric data decomposition. Important: you can not make use of #pragma omp for

or combined #pragma omp parallel for to parallelize Jacobi. To start with, make a copy of the se-
quential heat.c and solver.c into heat-omp.c and solver-omp.c, respectively. Next, follow the steps
enumerated below.

1. Try to understand how the C macros defined in heat.h are used in solver-omp.c to implement
the geometric data decomposition used in this code.

#define lowerb(id, p, n) (id * (n/p) + (id < (n%p) ? id : n%p))

#define numElem(id, p, n) ((n/p) + (id < (n%p)))

#define upperb(id, p, n) (lowerb(id, p, n) + numElem(id, p, n) - 1)

#define min(a, b) ((a < b) ? a : b)

#define max(a, b) ((a > b) ? a : b)

Draw the geometric data decomposition that is generated when these macros are used in the Jacobi
solver for howmany=4, clearly indicating the part of the matrix that corresponds to each value of
blockid.

2. Next parallelize the code in function relax jacobi, compile using make heat-omp and submit its
execution to the queue using the submit-omp.sh script (using 8 threads). Validate the paralleliza-
tion by visually inspecting the image generated and making a diff with the file generated with
the original sequential version.

3. Instrument the execution of the binary with Extrae by submitting the submit-omp-i.sh script.
Reason about the behavior observed, trying to answer the following questions: is the parallel ex-
ecution appropriate for 8 threads? Why the Jacobi solver does not benefit from using 8 threads?
Modify the source code to avoid this bottleneck and execute again without and with instrumenta-
tion. Is the parallel efficiency improving?. Is there a load balancing problem?

4. Is there any serious serialization in your parallel execution? Parallelize other parts of the code, or
simply rewrite them in a different way, in order to improve even more the efficiency of your parallel
code. Execute again without and with instrumentation in order to see the new behavior. Do the
load balancing and/or code serialization problems persist?

5. Once you are satisfied with the parallel behaviour observed, use the submit-strong-omp.sh script
to queue the execution of heat-omp and analyze the scalability of the parallelization for different
number of processors (1 to 12). Reason about the scalability that is observed.

4

4

Parallelization of Gauss-Seidel with
OpenMP ordered

Finally in this section you will parallelize the Gauss-Seidel solver using #pragma omp for and its ordered
clause. For this solver the important part is to decide how you will synchronize the parallel execution
of the rows assigned to each processor in order to guarantee the dependences that you detected with
Tareador.

1. Parallelize the Gauss-Seidel solver. Compile using make heat-omp and submit the execution of the
binary using the submit-omp.sh script to validate the parallelization (by visually inspecting the
image generated and making a diff with the file generated with the original sequential version).

2. Instrument with Extrae by submitting the submit-omp-i.sh script and visualize the traces gener-
ated for the parallel execution. Does the parallel behaviour match your expectations?

3. Once the parallelization is correct, use the submit-strong-omp.sh script to queue the execution
and analyze the scalability of the parallelization.

4. How can you control in your code the trade-off between computation and synchronization? Is there
an optimum value for the ratio between computation and synchronization? For the execution with
8 threads, explore possible ratios and plot how the execution time varies.

Optional 1: Implement an alternative parallel version for Gauss-Seidel using #pragma omp task and
task dependences to ensure their correct execution. Compare the performance against the #pragma omp

for version and reason about the better or worse scalability observed.

5

5

Deliverable

Important:

• Deliver a document that describes the results and conclusions that you have obtained (only PDF
format will be accepted). In the following subsections we highlight the main aspects/points that
should be included in your document. Only PDF format will be accepted.

• The document should have an appropriate structure, including, at least, the following sections:
Introduction, Parallelization strategies, Performance evaluation and Conclusions. The document
should also include a front cover (assignment title, course, semester, students names, the identifier
of the group, date, ...) and, If necessary, include references to other documents and/or sources of
information.

• Include in the document, at the appropriate sections, relevant fragments of the C source codes
that are necessary to understand the parallellization strategies and their implementation (i.e. for
Tareador instrumentation and for all the OpenMP parallelization strategies).

• You also have to deliver the complete C source codes for Tareador instrumentation and all the
OpenMP parallelization strategies that you have done. Include both the PDF and source codes in
a single compressed tar file (GZ or ZIP). Only one file has to be submitted per group through the
Raco website.

As you know, this course contributes to the transversal competence ”Tercera llengua”. Deliver
your material in English if you want this competence to be evaluated. Please refer to the ”Rubrics for
the third language competence evaluation” document to know the Rubric that will be used.

Analysis of task granularities and dependences

Starting from the initial coarse-grain task decomposition, explain the task graphs that you obtained
when a finer-grain decomposition is applied to each of the two solvers: Jacobi and Gauss-Seidel. Reason
about the causes of the data dependences that appear and how will you protect them in your parallel
OpenMP code.

OpenMP parallelization and execution analysis: Jacobi

Describe the data decomposition strategy that is applied to solve the problem, including a picture with
the part of the data structure that is assigned to each processor and the relevant OpenMP constructs
that you included in order to parallelise the execution of the heat equation using the Jacobi solver,
commenting how did you address the serialisation and load balancing problems observed. You should
include captures of Paraver windows to justify your explanations and the differences observed in the
execution. Finally you should analyse the speed–up (strong scalability) plots that have been obtained
for the different numbers of processors, reasoning about the performance that is observed.

6

OpenMP parallelization and execution analysis: Gauss-Seidel

Describe how did you implement the parallelisation strategy for the Gauss-Seidel solver and how did
you guarantee the proper synchronization between threads. Analyse the speed–up (strong scalability)
plot that has been obtained for the different numbers of processors, reasoning about the performance
that is observed and including captures of Paraver windows to justify your explanations. Finally explain
how did you obtain the optimum value for the ratio computation/synchronization in the parallelization
of this solver for 8 threads.

Optional

If you have done the optional part in this laboratory assignment, please include and comment in your
report what have you done, the relevant portions of the code, performance plots, or Paraver windows
that have been obtained.

7

